Least-squares estimator under k-monotony constraint for discrete functions
We propose two least-squares estimators of a discrete probability under the constraint of k-monotony and study their statistical properties. We give a characterization of these estimators based on the decomposition on a spline basis of k-monotone sequences. We develop an algorithm derived from the Support Reduction Algorithm and we finally present a simulation study to illustrate their properties.
Lien vers l'élément du SI MIA
https://CRAN.R-project.org/package=pkmon Informations générales
Informations spécifiques
Langage(s) de développement
Langage(s) d'interface
N° de version courante
V1 Date de la version courante
OS supporté
Etat
Développement suivi Porteur(s)
Unité
MaIAGE Equipe
StatInfOmics Auteur(s)
Giguelay Jade
Contact
jade.giguelay@inra.fr
Publication de référence